Sickle Cell Disease Center

OPERATIONS REPORT VERSION 1.4

18/514 Thottamoola Road, P.B. No. 20
Gudalur – 643212
The Nilgiris, Tamil Nadu,
INDIA

scdcenter@tihf.org

www.tihf.org/scd.htm
Table of Contents

 I. About the Association for Health Welfare in the Nilgiris and the Tribal India Health Foundation ..3

 II. Indian Tribal Health and its Correlates ...3-4

 III. The Goal of the Sickle Cell Center ...4-5

 IV. Sickle Cell Epidemiology and Presentation of the Target Area ...5-6

 V. Services of the Sickle Cell Disease Center ..7-11

 VI. Collaborators ..12

 VII. Operations Statistics ..13-14
I. The Association for Health Welfare in the Nilgiris (ASHWINI) and the Tribal India Health Foundation (TIHF)

The Association for Health Welfare in the Nilgiris (ASHWINI) is an NGO, founded in 1991, working in the Nilgiris District, Tamil Nadu to improve the health status of 25,000+ tribals in the area. ASWHINI uses a base secondary-care tribal hospital, a cadre of village-based health workers, and a health insurance program to provide clinical and community-based services to the target area. ASHWINI also administers health education and mental health programs to the target community. The Sickle Cell Disease Center is based on the campus of the tribal hospital, the Gudalur Adivasi Hospital, located near the town of Gudalur.

The Tribal India Health Foundation (TIHF) is a US-based nonprofit organization dedicated to improving health systems for tribal populations throughout India. Through a combination of research and development, the Tribal India Health Foundation and its affiliates collect and send medical supplies and provide administrative assistance to partner tribal health initiatives in India. Most importantly, TIHF funds and administers the Sickle Cell Disease Center, based at the Gudalur Adivasi Hospital.

II. Indian Tribal Health and its Correlates

A. An Introduction to the Tribals of India

India, as a whole, has long been characterized with considerable heterogeneity in terms of religion, territory, language, and caste. During the colonial period, the British enumerated and classified India’s population into groups and categories, one of which was the category of the tribal or adivasi (indigenous people). Prior to outside intervention, many tribal populations had self-regulating economic and political systems. The tribes were greatly dependent on the forest for their daily needs, including food, shelter, instruments, medicine, and even clothing.

With the policy of national development, however, the exploitation of minerals and forest altered the relationship between the tribes with the natural environment. As a result, tribal populations were forced into relinquishing those resources that had been the foundations of their existence, and what followed was the gradual governmental and societal castigation of tribals as a whole. Nowadays, the word “tribal” often brings to mind images of half-naked and women, arrows and spears in their hands, combined with myths of savagery and cannibalism. Thus, a limited knowledge of tribals in India has translated into a widespread propagation of false information and stigmatization of the approximately 100 million persons enumerated as members of Scheduled Tribes, comprising of about 10%-15% of India’s population.

B. The Health Profile of Tribal India and the Burden of Sickle Cell Disease

As a result of geographical and social barriers, relatively few primary and specialty care health facilities exist in tribal areas, and gaping disparities in health status of tribals, as compared to those in metropolitan areas, are evident. Along with a plethora of infectious diseases including malaria, tuberculosis, polio, and cholera, malnutrition and gastrointestinal disorders are pervasive...
among tribal populations, and stark deficiencies have been detected in gross amounts of calcium, iron, vitamin A, vitamin C, and animal protein. Certain tribal groups such as the Onges, Jarawas, and Shompens of the Andaman and Nicobar Islands are facing extinction due to endemic diseases, venereal diseases, and an unusually low sex ratio.

With a large population, burgeoning birth rate, and consanguineous marriage practices, there is a dangerously high prevalence of genetic disorders among tribal populations. Along with amino acid irregularities, Glucose-6-Phosphate Enzyme Deficiency, a fatal and genetically carried deficiency in a blood enzyme, is present in about 15 million tribals, who reside in primarily high-incident malaria zones such as Madhya Pradesh, Maharashtra, Tamil Nadu, Orissa, and Assam states. However, it is the presence of sickle cell anemia among tribal populations that has surged to the forefront as a critical public health problem among tribal groups. A congenital hemolytic anemia that results from a defective hemoglobin molecule, the sickle cell disease causes red blood cells to roughen and become sickled. These cells, in turn, result in an impaired circulation, chronic ill health, periodic crises, long-term complications, and premature death. Half of the patients with sickle cell disease die before 20 years of age due to organ failure.

Epidemiological studies confirmed that sickle cell anemia is rampant in the tribal populace, the prevalence of homozygotes for the sickle gene calculated to be over 20% with an estimated five million individuals predicted as carriers. The sickle gene was first described in tribal groups in South India, and studies illustrate its presence in various parts of India including Tamil Nadu, Madhya Pradesh, Orissa, and Kerala. Genetic diseases have traditionally received little attention from urban health services in India, and even less so in tribal areas. As a result, virtually all studies carried out regarding tribal populations and sickle cell disease have strongly recommended that genetic health services be integrated into existing primary health care and medical services to combat the epidemic. Few healthcare delivery systems, however, have implemented these recommendations.

III. Objective: The Goal of the Sickle Cell Disease Center

Post India’s independence in 1947, there was a temporary influx of literature on tribals, and tribal research institutes were set up in states that had substantial tribal populations. The purpose of these institutes was to undertake problem-oriented research for the formulation and implementation of development programs in tribal areas. However, though a significant amount of research was carried out in the early stages of these institutes’ existence, the output of these institutes has “steadily declined both in quality and quantity.” As a result, there have been few sustained interventions employed to combat the spread of congenital disorders in tribal areas.

The purpose of the TIHF/GAH Sickle Cell Disease Center, based at the Gudalur Adivasi Hospital, is to combine research with immediate clinical and community-based interventions to combat the spread of sickle cell anemia in Gudalur and Pandalur taluks in the Nilgiri area. The Gudalur Adivasi Hospital has been treating patients since 1990. The Center aims to devise, implement, and promote a holistic model of sickle cell management, in collaboration with partner organizations, which could be of use to other similarly affected communities in the country. The Sickle Cell Disease Center was started with the objectives of:
1. Identifying SCD in the newborn / or as early as possible by screening and confirmatory tests (hemoglobin electrophorosis).
2. Health education and counseling for SCD patients and relatives to enable the target population to understand the scope of the problem.
3. Prevention of SCD crisis with hydroxyurea and pneumococcal vaccine.

IV. Sickle Cell Epidemiology and Presentation of the Target Area

The Chetti population of around 5000 in the area is considered non-tribal, though the prevalence of sickle cell anemia is greater than that of resident tribal populations. Our hemoglobin electrophoresis analysis of the cohort of tribals and non-tribals in the area revealed that 270 out of 1598 tribals (17%) carried the sickle cell trait, while 14 of the 46 non-tribals (30%), all Chetti’s, carried the sickle cell trait (table 1). The higher prevalence of the sickle cell trait among the Chetti’s may be a result of a higher frequency of consanguineous marriages within the relatively small community.

Our analysis by tribe (table 2) in 2005 revealed that the Irula tribe was found to have the highest rate of sickle cell disease (14.2%) while the Bettikorumba tribe demonstrated the lowest disease rate. The Mullukurumba tribe demonstrated the highest carrier prevalence (29%), while the Kattunaickken tribe demonstrated the lowest carrier prevalence of (9.4%).

Table 3 illustrates gender breakdown of sickle cell patients at the Gudalur Adivasi Hospital, while table 4 details the common clinical presentations of the sickle cell patients in question.

Table 1 - Distribution of Sickle cell Heterozygotes (HbAS) among Cohort (n=1695)

<table>
<thead>
<tr>
<th></th>
<th>Tribal No. (%)</th>
<th>Non-Tribal No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbAS</td>
<td>299 (18)</td>
<td>14 (30)</td>
</tr>
<tr>
<td>Total (n=1695)</td>
<td>1649</td>
<td>46</td>
</tr>
</tbody>
</table>

Table 2 - Distribution of Sickle cell Trait (n=299) and Sickle cell Disease (n=46) by Tribe
The Irula tribe was found to have the highest rate of sickle cell disease (14.2%) while the Bettikorumba tribe
demonstrated the lowest disease rate. The Mullukurumba tribe demonstrated the highest carrier prevalence (29%),
while the Kattunaickken tribe demonstrated the lowest carrier prevalence of (9.4%).

<table>
<thead>
<tr>
<th>Tribe</th>
<th>No. Sickle cell Trait (% of respective tribe screened)</th>
<th>No. Sickle cell Disease (% of respective tribe screened)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bettikorumba</td>
<td>47 (11.5%)</td>
<td>6 (1.4%)</td>
</tr>
<tr>
<td>Irula/Kota</td>
<td>36 (17.1%)</td>
<td>5 (14.2%)</td>
</tr>
<tr>
<td>Kattunaickken</td>
<td>17 (9.4%)</td>
<td>3 (1.6%)</td>
</tr>
<tr>
<td>Mullakurumba</td>
<td>43 (29.0%)</td>
<td>6 (4.1%)</td>
</tr>
<tr>
<td>Paniya</td>
<td>186 (21.1%)</td>
<td>26 (3.0%)</td>
</tr>
</tbody>
</table>

Table 3 - Age and Gender Wise Percent Distribution of Patients with Sickle Cell Disease (n=46)

Of the sickle cell patients under study, the highest concentration fell in the 5-10 year age group for males (35%), and
the 11-20 year age group for females (17.4%).

<table>
<thead>
<tr>
<th>Age Interval</th>
<th>No. Male (%)</th>
<th>No. Female (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>4 (8.7)</td>
<td>2 (4.8)</td>
</tr>
<tr>
<td>5-10</td>
<td>16 (35)</td>
<td>1 (2.1)</td>
</tr>
<tr>
<td>11-20</td>
<td>5 (11)</td>
<td>8 (17.4)</td>
</tr>
<tr>
<td>21-30</td>
<td>1 (2.1)</td>
<td>3 (6.5)</td>
</tr>
<tr>
<td>31-40</td>
<td>1 (2.1)</td>
<td>1 (2.1)</td>
</tr>
<tr>
<td>41-50</td>
<td>2 (4.8)</td>
<td>2 (4.8)</td>
</tr>
</tbody>
</table>

Table 4 - Percent Distribution of Common Clinical Features among Sickle Cell Tribal Patients in the Inpatient Setting (n=21)

Fever (86%), epigastric tenderness (67%), and splenomegaly (52%) were the predominant clinical features displayed
by the sickle cell patients, while systolic murmur and tachycardia were found to be the least frequent clinical feature (19%) displayed.

<table>
<thead>
<tr>
<th>Clinical Feature</th>
<th>Percentage of SCD Patients Displaying Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>86%</td>
</tr>
<tr>
<td>Epigastric Tenderness</td>
<td>67%</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>52%</td>
</tr>
<tr>
<td>Pallor</td>
<td>38%</td>
</tr>
<tr>
<td>Edema</td>
<td>29%</td>
</tr>
<tr>
<td>Jaundice</td>
<td>29%</td>
</tr>
<tr>
<td>Respiratory Infection</td>
<td>24%</td>
</tr>
<tr>
<td>Systolic Murmur or Tachycardia</td>
<td>19%</td>
</tr>
</tbody>
</table>
V. Services of the Sickle Cell Disease Center

Sector I: Clinical Services

A. Center-Based Screening Component

- All Neonates → Hemoglobin Electrophoresis → Transcription of results on patient’s personal genetic health card → Repeated Hb electrophoresis for HbFS Patients after 1 year and transcription of results on personal genetic health card

- Suspected SC Cases > 1 year of age and not previously screened → Sickle-Prep Test + result → Transcription of results on patient’s personal genetic health card

- Hemoglobin Electrophoresis for sickle-prep + patients

B. Field-Based Identification and Monitoring Component

- Suspected/unidentified SC cases identified by health staff in the field → Blood samples taken at the field and sent to Center for screening → Results sent back to the field via health animators, and patients brought to Center for initial treatment phase

- Followup and continued treatment of patients the Center and field setting by health staff
B. Center-Based Treatment Component for Sickle Cell Patients with Field Monitoring

Neonatal and Children < 5 years Protocol

- **HbSS Neonates**
- **HbSS Children**
- 125 mg penicillin prophylaxis twice daily till age 2
- Immunization at age 2 with 23-conjugate pneumococcal vaccine
- 250 mg BID penicillin prophylaxis till age 5

Sickle Cell Patients > 5 years Protocol

- **HbSS Patients > 5 years**
- Immunization with 23-conjugate pneumococcal vaccine if not previously immunized
- Hydroxyurea administration for patients with over 2 vaso-occlusive crises per continued monitoring and prophylactic administration at the field/Center level as necessary
- Immunization with 23-conjugate pneumococcal vaccine if not previously immunized
- Hydroxyurea administration for patients with over 2 vaso-occlusive crises per continued monitoring and prophylactic administration at the field/Center level as necessary

Sector II: Community-Based Services

A. Deployment of Genetic Health Cards

- Patients receiving a sickle cell prep and/or Hb electrophoresis test
- Issuing of personal genetic health card with diagnostic test results
- Inclusion of genetic health card in patient’s insurance book
- Prospective genetic counseling at village level as necessary using genetic health cards
- Prior patient test results not transcribed
- Issuing of personal genetic health card with transcribed diagnostic test results
- Distribution of cards to respective area centers for distribution to patients
- Prospective genetic counseling at village level as necessary using genetic health cards

B. Sickle Cell Disability Fund

- Sickle cell patients evaluated on basis of financial need
- Patients provided up to Rs. 200/month in supplies to cover incidental expenses associated with treatment
- Prospective genetic counseling at village level as necessary using genetic health cards
C. Prospective Genetic Counseling and Sickle Cell Education Programs

- Village health worker trained in basic sickle cell education, counseling, and interpretation of genetic health cards
 - Village health worker hosts sickle cell education programs at area centers once every month
 - Village health worker provides non-directive genetic counseling to prospective parents post inspection of their genetic health cards

- Center-based health worker trained in basic sickle cell education, counseling, and interpretation of genetic health cards
 - Center-based health worker provides education and counseling using genetic health cards on a daily basis at the main hospital center
 - Center maintains library containing sickle cell literature for the public
 - Display and distribute posters and pamphlets relevant to sickle cell anemia

Sector III: Research & Documentation Services

A. Genetic Documentation

- Maintaining comprehensive sickle-prep and electrophoresis testing records for on-site testing using patient genetic health cards
 - Combining Center results with that of neighboring screening units/agencies to maintain a comprehensive register of the 2 taluks

B. Research Topics

- Investigating compliance issues with regards to sickle cell treatment mechanisms among the resident tribal and non-tribal populations
Evaluating the efficacy and appropriateness of common sickle cell treatment mechanisms among the resident tribal and non-tribal populations

Investigating the economics of sickle cell screening and treatment in the area

Pursuing active epidemiological studies to determine the rates of sickle cell trait and disease in the target area

Investigating community response, attitudes, and knowledge with respect to sickle cell anemia and its associated intervention

Health outcomes both mortality and morbidity patterns among resident tribal and non-tribal populations of the Nilgiris

Sector IV: Material and Monetary Resources

A. Patients

- Tribal and non-tribal patients charged on a sliding scale for screening and treatment of sickle cell disease
- Counseling and educational services provided by the Center for no cost

B. Government

- Potential funding for screening, treatment, prophylactics, vaccines, and hydroxyurea
- Potential funding for education programs and educational materials
- Potential funding for administrative and infrastructural costs incurred by the Center

C. Research Grants

- Institutional grants (ICMR etc…) used to further research activities as outlined by the Center
- Opportunities for medical professionals to conduct on-site research in collaboration with the Center
D. Non-Profit Organizations

- Funding used to further both clinical and community-based services provided by the Center

E. Medical and Public Health Professionals

- Expertise used to further the scope and quality of services provided by the Center
VI. Collaborators

The TIHF/GAH Sickle Cell Disease Treatment and Research Center aims to collaborate with the Tamil Nadu and Central Government, and neighboring non-governmental organizations conducting sickle cell-related work in the Nilgiris and other parts in India. Active non-governmental organizations of the area working in the health sector include:

- Swami Vivekananda Medical Mission
- National Adivasi Welfare Association (NAWA)
- Nilgiri Wayanad Tribal Welfare Society
- Center for Tribal Research and Development (CTRD)
- Coorg Institute of Dental Sciences (CIDS)
- American Tamil Medical Association
- NetMargins

In forming active partnerships with these organizations, a sickle cell disease committee may be established to monitor the management of sickle cell disease in the area, allocate government and private funding for sickle cell anemia, and ensure maximum utilization of sickle cell funding for each organization. Additionally, the committee can function as a central body through which all sickle cell funding requests may be routed, in order to minimize duplication of requests and streamline area operations.
Current Center Highlights

- Established neonatal and adult screening program using sickle prep (sodium metabisulphite) and hemoglobin electrophoresis
- Issuing genetic health cards to all screened patients via village-based health workers
- Providing Tamil education sheets on sickle cell disease to patients
- Immunization of sickle cell patients with pneumococcal vaccine
- Sustained treatment program for sickle cell patients using hydroxyurea and penicillin
- Pioneering online accessibility of sickle cell screening results for partner organizations to prevent test duplication [Center Screening and Treatment Data Site --- www.tihf.org/scddata.htm]
- Field-based screening capabilities
- Sickle cell disease disability funds and care packages

Operation Statistics (As of 3/12/07)

Patient Data

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Individuals Screened</td>
<td>2205</td>
</tr>
<tr>
<td>Number of Genetic Health Cards Issued</td>
<td>2500+</td>
</tr>
<tr>
<td>Number of Newborns Screened</td>
<td>100+</td>
</tr>
<tr>
<td>Number of Tribal Patients</td>
<td>60+</td>
</tr>
<tr>
<td>Number of Chetty Patients</td>
<td>17+</td>
</tr>
<tr>
<td>Number of Sickle Cell Patients Vaccinated</td>
<td>25</td>
</tr>
<tr>
<td>Active Patients</td>
<td>106</td>
</tr>
</tbody>
</table>

Medication/Supply Stock

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of Hydroxyurea (500 mg)</td>
<td>600 capsules</td>
</tr>
<tr>
<td>Amount of Prophylactic Penicillin (Kaypen 250 mg)</td>
<td>600 capsules</td>
</tr>
<tr>
<td>Number of Pneumococcal Vaccines (Pneumo-23)</td>
<td>10 vaccines</td>
</tr>
<tr>
<td>Number of Genetic Health Cards</td>
<td>2500</td>
</tr>
<tr>
<td>Patient Education Sheets (Tamil)</td>
<td>40</td>
</tr>
</tbody>
</table>